

Introduction

ESRD and cardiovascular disease

The importance of early detection of coronary artery calcification

 Electron beam computed tomography (EBCT), a method for evaluating coronary artery calcification

Materials and methods

81 patients with CRF
Three group 1. Predialysis, n=35

 Hemodialysis, n=31
 Peritoneal dialysis, n=15

EBCT for screening of coronary artery calcification

Table 1. Characteristics of the 81 patients

	Group I (n=35)	Group II (n=31)	Group III (n=15)
Sex (M/F)	21/14	20/11	7/8
Age (yr)	51.9 ± 12.0	57.0±14.0**	47.9 ± 11.0
Duration of dialysis (month)	-	13.4±21.8	31.7±37.0'
Primary disease			
CGN	17	11	10
DM	11	10	4
HTN	5	6	1
Others	2	4	0
Cardiovascular complication			
Present	5	5	5
Absent	30	26	10
Hemoglobin (g/dL)	9.55 ± 2.02	8.98 ± 1.43	9.16 ± 1.78
Albumin (g/dL)	3.97 ± 0.57	3.66 ± 0.71	$3.70 \pm 0.40^{\circ}$
Total cholesterol (mg/dL)	179.3±46.0	174.2±57.4	176.2± 44.9
BUN (mg/dL)	55.3 ± 23.0	$69.8 \pm 24.9^*$	56.1 ± 25.6
Cr (mg/dL)	5.38 ± 2.78	9.28±3.52*	9.68±3.54*
Ca (mg/dL)	8.37 ± 1.19	8.44 ± 1.42	9.37±0.78* ¹
P (mg/dL)	4.48 ± 1.36	5.23 ± 1.63	5.61 ± 1.91
Ca×P(mg/dL²)	236.7 ± 9.4	$43.0 \pm 12.7^{*}$	$53.8 \pm 17.8^{\circ}$
PTH (pg/mL)	200.3 ± 188.4	231.1 ± 196.2	227.4 ± 177.9
Calcium score	84.6 ± 199.0	211.8 ± 325.5	655.7 ± 1009.8

CGN, chronic glomerulonephritis; DM, diabetes mellitus; HTN, hypertension; Ca \times P, serum calcium-phosphorus product; PTH, serum parathyroid hormone.

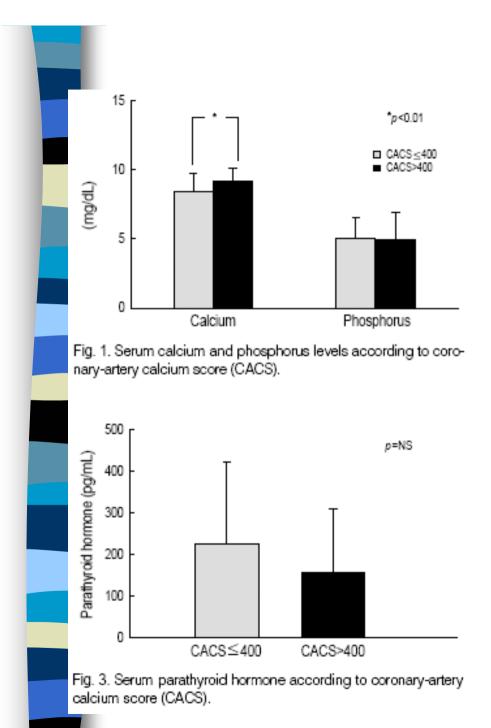

*, *p*<0.05 vs. Group I; [†]*p*<0.05 vs. Group II; [‡], *p*<0.05 vs. Group III.

Table 2. Laboratory data according to the presence or absence of dialysis

	Group I (n=35)	Group II and III (n=46)	<i>p</i> value
Hemoglobin (g/dL)	9.55 ± 2.02	9.04 ± 1.54	NS
Albumin (g/dL)	3.97 ± 0.57	3.67 ± 0.62	<0.05
Total cholesterol (mg/dL)	179.3 ± 46.0	174.9 ± 53.1	NS
BUN (mg/dL)	55.3 ± 23.0	65.3 ± 25.7	<0.05
Cr (mg/dL)	5.38 ± 2.78	9.40 ± 3.50	<0.01
Ca (mg/dL)	8.37 ± 1.19	8.74 ± 1.31	NS
P (mg/dL)	4.48 ± 1.36	5.35 ± 1.71	<0.05
Ca×P(mg²/dL²)	236.7 ± 9.4	46.6 ± 15.3	<0.01
PTH (pg/mL)	200.3 ± 188.4	229.8 ± 188.1	NS
Calcium score	84.6 ± 199.0	356.6 ± 657.4	NS*

Ca×P, serum calcium-phosphorus product; PTH, serum parathyroid hormone. **p*=0.089.



Fig. 2. Serum calcium-phosphorus product according to coronary-artery calcium score (CACS).

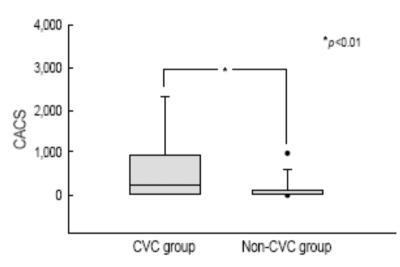


Fig. 4. Distribution of the coronary-artery calcium score (CACS) level according to presence or absence of cardiovascular complications (CVC).

Discussion

Severe calcification begins long before renal insufficiency is severe enough to require dialysis.

- Patients with ESRD on HD vs nondialysis patients with coronary artery disease
- Nondialyzed individuals with DM vs non-DMs.

PD group should be controlled more strictly in Ca,P and the Ca*P product.

If calcium scores>400, an exam on ischemic heart disease through a pharmacological or exercise stress test should be done. In conclusion, this study suggests that EBCT a good diagnostic tool for evaluating the risk of coronary artery disease "non-invasively."